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Abstract
We propose a simple scheme for smoothly approximating the abslitr distribu-

tion for relatively long tests, assuming that the ICC's are known or well estimated.-
The scheme works for quite a maul class of item characteristic turves (ICC's)
and is guaranteed to completely recover the 9 distlibution an the test length,
.1, grows. After an initial function inversice, the scheme can be inexpensivelr
used to reamer the ê distribution in each of several different administrinions
of the simie test (or subpopulations in one test administratkm). Mereevert this
approach could be used to recover the distnbution of a ciaminant abilitY dimen-
sion when local independence fails. Finally, the scheme provides a starting place
for diagnostics concerning assumptions about the shape of the 0 distribution or
ICC's of a particular test. Work is currently underway to further examine an&
refine these methods using estumtially unidimensional simulation data, and to
apply the estimators to real. tests.

Keyword= Item response theory, kernel smoothing, latent trait distribution,
population assessment.
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were performed by Dorothy Thayer at ETS; the simulations reported here were performed by Junker at th'.$
University of Illinois and Carnegie Mellon University.
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I. The basic estimator

A principal application of educational testing is inferring the distribution of abilities in

various populations. This task is important for both users of these tests (in, say, comparing

various subpopnlations) and researchers and test developers (in, say, developing or using

item calibrationICC parameter estimationprocedures within the IRT framework).

Inference about the ability distribution from item response data goes back at least to

Lord (1953) who gives an interesting qualitative account of the possible distortions induced

by the traditional IRT model. With the rise in popularity of item response theory, IRT,

many methods for estimating the latent distribution have been developed.

Samejima and Livingsten (1979) fit polynomials to latent densities using the method of

moments. Samejima (1984) also fits 0 densities, given the MLE Ô, using specific parametric

familie. by matching two or more moments. Levine (1984, 1985) projects the (unknown)

latent distribution onto a convenient function space in the span of the test's conditional

likelihood functions and estimates the projection by maximum likelihood. Mislevy (1984)

assumes that the ability distribution is well approximated by a collection of masses centered

at points placed a priori along the 0 axis and estimates the sizes of the masses at each

point. More generally, hierarchical and/or empirical Bayes techniques may be used to esti-

mate parameters of the latent trait distribution if it belongs to a tractable family of priors.

These methods all rely upon local independence for their validity; moreover they tend to be

expensive in terms of computation and storage.

We will examine a simpler method of estimating the ability distribution which, in addi-

tion, is robust to some violations of local independence. Consider a set of .1 binary items

that may be embedded in a longer sequence or pool of items (X1, X2, X3, . .). Let e be the

latent trait of interest, let P1 (0), P2(0), . . , Pj(0) be the item characteristic curves, ICC's,
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with respect to 0, and denote averages of items as Xj = Eif xi, and similarly for averages

-15j(0) of ICC& Under the usual local independence (LI) and monotonicity (M) conditions

of item response theory (e.g. liambleton, 1989), or more generally under Stout's (1990)

formulation of essential independence (EI) and local asymptotic discrimination (LAD), we

know that aj(Xj) ss. 7531(XJ) is a plausible point estimate of 8: ej(L) is a consistent

estimator of e under either set of assumptions. It immediately follows that the distribution

of &J(L)

FAO = t]

converges to that of 0 as well (e.g. Serfiing, 1980, p. 19). Now consider administering the

test Xj to N examinees, obtaining N response vectors
XL,' 2fArj and corresponding 0

estimates aj(,1i j), .N.7); a natural estimator of the 8 distribution is the "empirical"

distribution of these aj's

:1pAr.,(t) :4110,GLJ)5t)

{fraction of 01/MLA's 5. t}

where the "indicator function" ls takes the value.1 if S is true and 0 if S is false.

(1)

Theorem I Suppose (X1, X2, ...) is a sequence of items and 0 is a latent trait such that

EI and LAD hold. Define j 3(2( i) as above. If the distribution function

F(t) = Pfe < tl

is continuous, the empirical distnbution function PN.J(t) defined in (I), converges in proba-

bility to F at each t as both J -0 co and N o o.

As with the work of Stout (1990) and Junker (1991), the embedding in an infinite-length

item pool is partly a conceptual tool. In practice, one might check the EI condition using

Stout's (1987) test, and check the LAD condition by verifying that the average ICC for a

particular test was an invertible function.
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In fact, the full strength of the LAD condition is not needed here. A weaker condition

that also gives the theorem is that, for all t2 > t1 there exists c(t1, t2) such that

Urn infi5j(C2) 7.7(ti) > f(tlt i2) (2)
J

Similarly, the full strength of te EI condition is nct needed. It suffices to have, for all t,

lim Vat (Xj10 = t) = 0 (3)

Under the weaker conditions (2) and (3), the consistency of P.71(X1) as a. point estimate

for 0 may fail, but Theorem I still goal through The proof of Theorem I is ased on a

well-known exponential bound due to Dvoretsky, Kiefer and Wolfowitz (Settling, 1980, p.

59) on the error made in approximating Fj(t) with PN,j(t). See Appendix B for some details.

2 Two practical considerations

Note that the theorem does not in any way require that the ICC's have 0 and 1 as lower and

upper asymptotes. For example, if Pj has a lower asymptote c, i.e.,

liminfPJ(t) > c > 0, Vt E
-..00

there certainly could be positive probability that some Sa's have X j < c. The only rea-

sonable thing for TT' to do with such an Xj is send it to oo, which ruins the estimate of

F.

But for any fixed 0, if e < iirn infj, RAO),

lim sup PI:Vj < el
I 4..co

00

Um sup f PtXj ele = tldF(t)
J ..ao 00

cv,

< Um supf P[XJ pi(o)le = ticiF(t)
00

F(0),
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after observing that 11j 5_ P3(0)10 t} 1{e<8} and applying standard convergence

results (Ash, 1972). By letting 6 -4. co it follows that

Urn P[Xj < = O.

The distribution of ij(L ) does indeed place mass at 00 for some scores (e.g., for Xj/J = 0

and fails to "recover" the 0 distribution for those scores. The point of the calculation

is that as J grows, the part of the 9 distribution corresponding to these "bad" scores

becomes negligible, so we don't have to worry, theoretically, about its not being recovered.

Indeed, under local independence, we can further calculate that PLj < d falls off essentially

geometrically as J oo (Hoeffding 1963, p. 15).

However in practice we still must be concerned about Xj s below a. lower asymptote c,

or above an upper asymptote d. In the pilot simulation described below we have made two

adjustments for this problem. Our first adjustment replaces the basic point estimate Oj with

an estimator based on a shrunken Xj:

p
J + 2

This estimator also converges in distribution to 0 and it is evidently bounded (for fixed J)

if the asymptotes of Pj are 0 and 1. Our second adjustment is in the numerical inversion

of the function Tj on the computer. We have written the inverter (a secant variation of

Newton's method) so that it finds a root of a linear extrapolation of i3j(t) = Xj when Xj

lies outside the asymptotes of P. This adjustment is innocuous asymptotically.

Finally, note that this method (like others) requires "perfect" knowledge of the ICC's.

In practice of course one never knows the ICC's perfectly, so it is important to know what

happens if the 'wrong' ICC's are used in the definition of ej. For example, how sensitive

is this method to using estimates of the item parameters in a, 3PL (three parameter logistic

ICC) model. instead of the true parameters; or how far off is the estimated 0 distribution if

the true ICC's are 3PUs. but only Rasch ICC's are used to calculate iJ?

9
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Theorem 2 Suppose XII X2, and 0 are as in Theorem I with ICC's P1(t), P2(07

with average TAO as before. and suppose

R1(t), R2(t), .

are another set of ICC's. unth average irij(t). Let15:7' and R be the corresponding inverses,

and let

aj(ei) =

Fix 0 such that 173:71R3(0) has a finite limit r(0). Then

FJ(0) = Prib(&) 5- 91 F(r(17))

(where F is the distribution of 0). If these hypotheses hold for every 9 and if r and F are
continuous functions, then the convergence is uniform in 9.

The existence of the limit r(0) is a technical requirement that, like LAD, is innocuous in

the context of real, finite length tests. The most useful interpretation of Theorem 2 is that

IF3(0) FP5:-1Ti3(0)}1 0

as J oo, i.e., the distribution of 0 is estimated with a distortion 7534R3.. This follows

from the theorem if F is continuous at r(9).

The proof of Theorem 2 expands on the technique used to prove convergence of FAO) to

F(0); see Appendix B. Just as in Theorem I it is also possible to show that the empirical

distributions
1

PN.Ati
n=1

converge to F(r(0)).

The value of Theorem 2 is that if the function Pi-'(-173(6)) can be (partially) identified,

then the distribution of 9 j can still tell us a lot about the underlying 8 distribution. For
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example, if the "true ICC's" are P(0) and the 0 distribution is recovered with "estimated

R (0), with the estimated ICC's satisfying

frij(0) Rj(0)1 0

as J oo, then the estimated distributions Fj will converge to the true distribution F of

0, as long as the derivative P(0) is bounded away from zero at each U as J 0 co (this is

guaranteed by LAD for example).

Some knowledge of the underlying 0 distribution may even be available when the "true

ICC's" P.,(0) and the "recovery ICC's" RAO) do not match up asymptotically. For exam-

ple, it is easy to check numerically that for 'typical" parameter values, averages of logistic

ICC's are themselves approximately logistic (with parameters approximately the averages of

the discrimination and difficulty parameters of the individual ICC's). Thus for example if

the PAO) are Rasch (one-parameter logistic) and the estimation method for the "difficulty

parameters" bi is !mown, on average, to bias the k by some fixed but unknown additive

bias parameter (so that logit R1(0) 'Pe logil fl) then roughly 7;1(713(9)) a0 0,

with, a near 1, so that the location of the 0 distribution will be estimated wrongly but

the (shape) family to which it belongs may still be identified. Similar considerations apply

when the P2(0) are 3PL. and the R1(0) are 2PL: over the domain of 771,' (0), 75(L(0)) is

approximately linear.

3 Kernel smoothing

The basic estimator proposed ;n (1) is the "empirical distribution" function

ky.,i(t)
1 +v..

N
I

= EPN[x.,
1{757,4 cil.n<t}

(X,,J)<t}

I 1

(4)
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where

NPivfx." =j/e1) = v E 1 frst.F=3/
nm. 4

is the natural estimator of the (discrete) distribution of Ari based on N observationsThe indicator function on the far right in (4) may be written

1 k
{771(1/4<t}

where R(u) is constant, except for a jump from 0 to 1 at u = 0, and h is imy positivenumber. In cases where the e distribution F is continuous, we may be able to improvethe performanceof PN,J by replacing the disaete function fc with a continuous distributionfunction K(u) increasing from 0 to 1 as u ranges from oo to co. Denote the smootlxdestimator as

;NAM = AVM j/JIK[
j=to

7.711
= 1 N --13711(X41

(5)
This estimator is in the same spirit as kernel density estimators for estimating the density ofa continuous random variable V based on direct, independent observations VI, 1/2, .." VN:

where k(t) is a fixed density (see for example Silverman, 1986). However it differs from theseestimators in several ways.

First, our estimator Pi'vvh is a distribution estimator, not a density estimator. Reiss(1981) is another example in which kernel smoothing is used to estimate distributions.Second, we are not allowed dire4 access to the observations Oh ON. We must baseour estimation of F on the discrete, noisy transformations XL', ,XNj of e1,...,ehr.Note that the "granularity" of these observations changes with J.

II IP



www.manaraa.com

;Maker: Recovering the Ability Distribution
9

Third, the observations Ty, ...,XNJ must be transformed by the nonlinear transfor-

mation 733'. This means that the granularity changes- over the tinge of e and r.r; this

complicates practical calculations such as those leading to optimal rates for N1.1 and h.
--

We now show that the weighted root mean square error (RMS).betvreen this estimator

and the true e distribution goes to zero as N,..1 co. The thesmem below is analogous to

Theorem I.

Thelon 3 Suppose X1, X2 . . and e are as in Theorem .1 with 1CC's P1(9),P2(0),...

Define kiqjh(t) as in (5), for a fixed kernel distribution function K. Then if the distribution

function F of 0 is continuous, and K has a finite first absolute moment,

14RMS [EN.rh(t) F(t)]2g(t)dt1° - 0

as N oo,. --+ co and h --- 0, for any density 0).

(6)

Unlike most nonparametric density estimation results, there is no restriction on the rates

at which h 0, N 1. co or .1 oo. This is partly because a distribution function is

smoother than, and therefore easier to estimate than, a density. The corresponding technique

for estimation of the 0 density would require h3 to tend to zero moreslowly than gij(Xj)

(3), for example, as well as further conditions on the rates at which N and .1 tend to co.

Despite the fact that there are no rates in the theorem, devising h as a function of N and .1

to produce the "right" amount of smoothing is an important issue to which we shall return

below.

The proof of Theorem 3 (see Appendix B) is based on decomposing the RMS in (6) as

oe

RMS2 = {P[77(xj) hlt 5_ tll3g(t)dt
L40

t -7)] g(t)dtr° varK [ h+ (7)
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where Y is a random variable with distribution K, independent of 0 and ail item responses.This technique can be modified to show that

EIPN,m(t) FM? 0 0
for any t, and hence ENja(t) F(t) in probability, for each continuity point t of F. For
example, thif provides another proof that our original estimator EN4 converges in probabilityto F. It would also be clear from the proof that the same smoothing could be applied withany consistent estimator jj in place 757:71(Xj).

From the decomposition of RMS in (7) into squared-bias and variance terms it seemsthat the optimal h should be more sensitive to J than N. Indeed, when I is small and Nis relatively large, the coarse g7-antlarity inherent in 3331(XJ) should predominate over thefiner granularity inherent in observing N examinees.
A workable approach to setting h is to make a quick, crude estimate of the variance of eby assuming that Xj is uniformly distributed on the interval defined by the lower asymptotec and the upper asymptote d of NO) and then applying the formula

h = C. (Var ern
(8)

which seems appropriate when it- has a variance (Silverman. 1986, pp. 45-48; Reiss, 1981).Our crude estimate of Var 0 is obtained by tabulating values of 161) = 7.7-4((j 1)/(1 + 2))for all j such that c < (j ± 1)/(4.1 + 2) < d, and calculating

Var 0)112 P.- (.7413)(interquartile range)
(following the relationship between interquartile range and standard deviation for the Normaldistribution). Preliminary trials with C = 1, 1/2.1/3, 1/4 in (8) indicated that C = 1/3produced the best RMS results.

There is reason o believe tize, ,..licire of K should not be very influential on the RMS in(6) (Silverman, 1986, pp. 42-43). The K used in 011: dolions was
t 3

K(t) u2) 104<l}du

" 11"wir w 111 '1 '1 4" IT '

z

5°-

IL
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-1t

14.(3t t3 + 2) , itt < 1

1 t > 1

This choice is conservative about the tails of the e distribution.

4 Computer simulation

(9)

The estimators proposed in Theorems 1 through 3 are less complicated than distribution

estimators currently in use in IRT. To help evaluate these estimators a pilot simulation

study was performed. In this simulation, item response data was generated using various

4 1 parametric moiels, and we attempted to recover the ability distribution using both

the smoothed and unsmootIled estimators.

Monte Carlo trials: M = 100
Examinee samp e size: N = 5,000
Ability distribution: Normal N(0, 1,

Bimodal Mixture 1. /V( 1.5, 1) + i N(1.5, 1)
Discontinuous XI I

Test length: J = 10, 30. 60. 100
ICC type: Rasch: Vs equally spaced from -2 to 2

3PL: Vs equally spaced from -2 to 2
(ifs cycling through 0.5, 1.0, 1.5
c-'s all set to 0.21

'Estimated': Generated with the 3PL ICC's above;
Estimated with the ICC parameters:

81.--. N(b1,1/J)
cti ,., Mai3O.25)

max{ N(0.2, 0.1), 0)
(all independent).

Table 1: Monte Carlo simulation parameters.

The parameters of the pilot simulation are indicated in Table I. All possible combinations

1_5
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of these parameters were investigated. The choice of ability distributions was intended to

examine two °typical" and one "worst case" target distribution. While the standard normal

distribution is extremely smooth and has a bounded positive density the distribution of the

shifted chi-squared random variable x1-1 puts no mass below 9 = 1 and the density :lumps

from 0 to 1-fx) at 0 = 1. (This choice is not intended to be terribly realistic, but allmvs

us to explore the performance of our distribution estimator under adverse circumstances.)

Although the means of these distributions are both 0, the chi-squared distribution has twice

the variance of the normal. The bimodal mixture was chosen to represent a situation where

two radically different types of examinee take the test. Its standard deviation is also greater

than 1 (roughly 1.8).

The ICC's used were all subfainilies of the three parameter logistic (3PL) curves:

P2(t) = ci (1 ci)[1 expialit

In the case labelled "Rasch', ai 1,c1 0 and bi are as indicated. The same ICC's
were used to recover F as to generate the data. Indeed ey) is exactly the MLE for 9

under the Rasch model with known item parameters. Similarly for the 3PL case, whex all

the parameters were allowed to vary as indicated above; now xp is a somewhat inefficient

estimator of O. In the case labelled 'Estimated', the 3PL ICC's were used to generate the

data (113(0)'s in Theorem 2) but then their item parameters were deliberately contaminated

with noise to produce the -recovery ICCs" (.111(0)'s in Theorem 2) used to estimate F, to

roughly approximate the practical situation in which item parameters themselves must be

estimated from data. Thus the cases Rasch, 3PL, and 'Estimated' represent increasingly

hostile situations for the distribution estimator to work in.

Finally, the choice of N = 5.000 examinees was somewhat arbitrary. In preliminary runs,

N = 1,000 and N = 10,000 yielded measures of fit of the estimated ability distribution to the

true distributke quite comparable to those reported here. The main difference was in the

variaic of our estimated measures of fit. N = 5,000 was chosen because at that level the

161
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variance is much better than at N = 1,000 and not much worse than that at N = 10,000.

The basic estimators used to compare recovery of F from case to case were the empirical

distribution function (EDF)

N
= Tsr E ,/pcx,44.0_,st)

n=1.

and the kernel distribution estimator (KDE)

N

N (t) = KN n=1

where

ij(j) (Mal

=_p_I X + 11
+ 2 I

(and K and h are as described in (8) and (9) above). Each of these distribution estimators

is consistent for the true e distribution, by application of Theorem 1 through Theorem 3.

For each simulated data set, sample means and standard deviations for estimates of

00
142RMS = {Ef [Fest(t) F(0139(t)dt}

are reported. In addition, mean estimates of

MAX = Etsup{1Fett(t) oo t co)]

and the average value LOC = tn.,. at which MAX is attained axe reported. (Note: Feat

stands for either of the distribution estimators above.) In general the weighting function g

should be chosen to reflect our interests in the 0 distribution F: g should give more weight

to areas of F that should be well-estimated and less weight to areas of F for which we are

willing to tolerate less pod estimation. In these simulations, the weighting function g was

taken to be the standard normal density: some weight is given to estimating F well at all

O's, but more weight is given to estimating F well near 0 = 0. More details about these

distances and the methods of calculation can be found in Appendix A below.

17
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Test
Length Estimator

RMS
ave SD

Deviation
MAX LOC

10 EDF 0.04655 0.00002 0.11021 0.37694

KDE 0.02318 0.00003 0.03812 0.89134

30 EDF 0.01692 0.00001 0.04032 0.09754

KDE 0.00887 0.00002 0.01447 0.23184

60 EDF 0.00984 0.00002 0.02510 0.07844

KDE 0.00652 0.00002 0.01076 0.05334

100 EDF 0.00731 0.00002 0.01895 -0.02856
KDE 0.00577 0.00002 0.00965 -0.07616

Table 2: e Pd N(0, 1 ), Rasch

Test
Length Estimator

R MS

ave SD
Deviation 1

MAX LOC 1

10 EDF 0.07015 0.00002 0.15724 -1.00076
K DE 0.05158 0.00003 0.09368 -1.23646

30 EDF 0.02794 0.00002 0.06418 -0.77476
KDE 0.02176 0.00002 0.03755 -1.26626

60 EDF 0.01521 0.00002 0.03527 -0.46316
KDE 0.01251 0.00002 0.02109 -1.05756

,
100 EDF 0.01035 0.00002 0.02463 -0.33196 '

KDE 0.00907 0.00003 0.01532 -0.80926

Table 3: 0 N(0.1), 3PL

s

I I I 1* I I II I
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Test
Length Estimator

RMS
ave SD

Deviation
MAX LOC

10 EDF 0.09665 0.00004 0.22175 -0.74996
KDE 0.08412 0.00004 0 13431 -1.21956

30 0.05695 0.00004 0.11573 -0.67436
KDE 0.05439 0.00004 0.08258 -0.89616

60 EDF 0.01835 0.00002 0.04188 -0.70396

,
KDE 0.01645 0.00M3 0.02802 -1.10236

100 EDF 0.01823 0.00003 0.03782
.

-0.49826

, KDE 0.01767 0.00004 0.02668 -0.79636

Table 4: e N(0,1), Estimated

From Tables 2, 3 and 4, it is clear that smoothing in the KDE is helping, especially with

short tests. In comparing Tables 2 and 3 it is clear that the presence of the nonzero lower

asymptote c is degrading the fits. This can be seen both in the reduced RMS values and '4n.

the movement of LOC, the location of the maximum deviation between Fm and F, toward

negative values. Finally, comparison of Tables 3 and 4 indicates th using 'noir" ICC's
somewhat degrades the recovery of F.

Figure 1 illustrates the performance of the estimators in Table F. The first three panels

are probability-probability (p-p) plots of the estimated 8 distributior ....ctical axis) apinst

the true 8 distribution (horizontal axis), for 10, 30 and 60 items. Each panel depicts ette
of the 100 Monte Carlo trials for the corresponding line of Table 3 Tht rte-.1 functions

represent the EDF estimator and the smooth curve represents the KDE eswaator. The
closer each is to the solid diagonal line, the better the true probabilitivs the e disSution
are estimated. In particular for 30 or 60 items, estimated probabilities are (;:.'.te close to

probabilities. The story is very similar for the performance of the estimators it. Tables 2, 5

and 6 (see also Figure 3). The fourth panel in Figure 1 compares the density derived from

the KDE estimator in panel three to with the true 49 density (some excessive '4umpinc......

the estimated density is attributable to the fact that the "window width" h v413 chosen to

19
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Theta - Normal, 3PL.10 Items Theta - Normal. 3PL, 30 terns

0 0 42 0.4 0

Tao 011440uson

08

Theta - Nomad, 3PL, 60 Items

to

0 0 02 04 0 $

TM" Thee 01011141$0/1

I la

The These 010114004

Theta - Netted, 3PL. 60 kerne

0

rifts

a

Figure 1: p p and density plots of EDF and KDE estimators. EDF is represented by step
function, KDE by curve. In the last panel. the true density is the dashed curve and the
KDE-based density estimate is the solid curve.
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make a good distribution estimate rather than to make a good density estimate).

Pula - Normal, Estimated, 30 lama

02 0 4 0 6

Too Thset Diertmon

t .0

Theta - Normal, Estimated, 30 Items

4 2

Figure 2: g p and density plots of EDF and KDE estimators. EDF is represented by step
function, KDE by curve. In the second wenel, the true density is the dashed curve and the
KDE-based density estimate is the solid curve.

Figure 2 illustrates the performance of the estimators in Table 4. The left panel is a
p p plot of the EDF (step function) and KDE (smooth curve) estimators for 30 items, and

the right panel compares the corresponding KDE-based density with the true e density. In

the Monte Carlo trial illustrated, contamination in the parameters of the "recovery' ICC's

caused some bias and scale distortion in the estimated distribution, but the estimate still
correctly suggests that 0 has a Normal or bell-shaped distribution.

In Tables 5, 6 and 7, in which e is bimodal, the KDE estimator is still doing better

than the EDF. It is encouraging to see that the orders of magnitudes of the RMS and MAX

measures of fit are the same as in the N(0, 1) case above. It is a little surprising that the
fits can actually be better for the bimodal cases than the normal, but perhaps the greater

variability is working in our favor here: we are getting mom, extreme-ability examinees with

which to form F, and thus to estimate the tails of F. Finally, note that there is much less

21
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difference in the fits of the 3PL and 'Estimated' 3PL cases.

Test
Length Estimator

RMS
ave SD

Deviation
MAX LOC

10 EDF 0.04769 0.00003 Th.12379 -1.36996
KDE 0.03678 0.03003 0.06299 -1.25226

30 EDF 0.01820 0.00003 0.04668 -0.61856
KDE 0.01547 0.00003 3.02502 -0.42646

60 EDF 0.01107 0.00003 0.02710 -0.25206
KDE 0.00995 0.00003

4
0.01622 -0.17576

,

100 EDF 0.00870 0.00003 0.01923 -0.03886
KDE 0.00817 0.00003 0.01290 -0.13216

Table 5: e Bimodal, Rasch

Test
Length Estimator

RMS
are SD

Deviation
MAX LOC

10 EDF 0.05268 0.00003 0.12160 1.08084
KDE 0.03612 0.00003 0.09342 -4.44996

,,

30
.

EDF 0.02268 0.00002 0.05616 -0.66696
KDE 0.01877 0.00W2 0.04229 -3.68386

60 EDF 0.01353 0.00003 0.03496 -1.24996
KDE 0.01205 0.00003 0.02561 -2.75386

100 EDF 0.00998 0.00003 0.02457 -1.22086
KDE 0.00924 0.00003 0.01860 -2.64946

Table 6: ê Bimodal, 3PL

Figure 3 illustrates the performance of the estimators in Table 6, for 60 items. Again.

the left panel is a p- p plot of the EDF (step function) and KDE (smooth curve) estimators

and the right panel depicts the KDE-based density estimate. Once again the estimated

distribution provides good estimates of probabilities under the true distribution, and the

corresponding density estimate tracks the two modes of the true e distribution reasonably

well.

22
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Test
Length Estimator

RMS
ave SD

Deviation
MAX LOC

10 EDF 0.Mi ifit 0.00005 0.14624 0.78714
KDE 0.05101 0.00005 0.09497 -4.97589

30 EDF 0.03203 0.111005 0.08038 -2.37405
KDE 0.02958 0.00005 0.06457 -3.38695
EDF 0.01386 0.00003 0.03747 -1.11546
KDE 0.01245 0.00003 0.02796 -2.63776

100 EDF 0.01120 0.00004 0.02776 -142786
KDE 0.01055 0.00004 0.02134 -2.29616

Table 7: 9 m. Bimodal, Estimated

rola - Bimactai. 3PL. 60 hems mak - Bimodat. 3PL 60 Rims

TRIO MO DelftAMOR Theft

Figure 3; p - p and density plots of EDF and KDE estimators. EDF is represented by step
function. KDE by curve. In the second panel, the true density is the dashed curve and the
KDE-based density estimate is the solid curve.
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In Tables 8, 9 and 10, note how gradual the decrease in MAX is; this can be attributal

partly to the fact that e "doesn't know" that F assigns no mass to the interval (-oo, -1)

and thus freely places j's there. so that Feat is grossly overestimating F for 0 < -I. 'This

certainly explains why LOC is near -1. in a but one case. It seems remarkable that the

RMS should drop as muc4: as it does, considering the fact that the Normal weighting function

g assigns significant weight to the region near or below 8 = -1. Once again them is little

difference between the 3PL and 'Estimated' 3PL eases. Finally, note that the EDF estimator

is doing better than the KDE estimator in many cases here. Our ad hoc choice of h is

probably failing u.s here by being too large to track the "sharp upturn' in F at -1.

Test
Length Estimator

R.MS

ave SD

Deviation
MAX LOC

10 EDF
KDE

0.09922
0.09241

0.00004
0.00003

,

0.23352
0.20600

-0.26996
-1.00996

30 EDF
KDE

0.05404
0.05508

0.00003
0.00113

0.14608
0.17924

-0.91796
-1.00996

60 EDF
KDE

0.03812
0.04010

0.00003
0.00003

0.15993
0.16010

-1.00996
-1.00316

100 EDF
KDE

0.02944
0.03215

0.00003
0.00003

0.15246
0.14717

-0.99996
-0.99996

Table 8: e X.2 1, Rasch

5 Discussion

To implement this scheme in practice, one must numerically invert the average ICC P3 for

the test in question at or near the J4-1 possible values of T.T. After this, a table constructed

from the inversion can be used simply and cheaply to estimate 0 distributions for each

of several adrninistrations of the same test, or each of several subpopulations in a single

administration. For shorter tests lengths the basic statistic ij may need to be resealed,

I I
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Test RMS Deviation
Length Estimator ave SD MAX LOC

10 EDF 0.11871 0.00004 0.30689 -1.00996
KDE 0.10699 0.00004 0.28934 -1.00996

30 E1M 0.22700 -1.00996
KDE 0.071 0.00004 0.23167 -1.00996

60 EDF 0.05291 0.00003 0.20477 -1.00996
KDE 0.05408 0.00003 0.20211 -1.0M96

100 EDF 0.04153 0.00003 0.19628 -0.99996
KDE 0.04365 0.00003 0.18294 -1.00976

Table 9: 0 X3 1, 3PL

Test RMS Deviation
Length Estimator ave SD MAX LOC

10 EDF 0.11387 0.00005 0.30689 -1.00996
KDE 0.10600 0.00005 0.33073 -1.00996

30 EDF 0.08264 0.00005 1 0.32359 -1.00996
KDE 0.08161 0.00005 0.30244 -1.00996

60 EDF 0.05322 0.00003 0.20477 -1.00996
KDE 0.05466 0.00004 0.21590 -1.00996

100 EDF ' 0.04303 0.00004* 0.20150 -1.00996
KDE 0.04491 0.00004 0.20859 -1.00646

Table 10: 0 x2 - 1, Estimated
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as we have done with i()), to effectively estimate F. Kernel smoothing of the estimated

distribution (KDE) is also quite helpful. Work is currently underway (Nandakumar and

Junker, 1992) to further examine and refme these methods using essentially unidimensional

simulation data, and to app!y the estiinistors to real tests.

Because it is fest, this scheme could be a.lso be used for some diagnostic purposes. For

example, if ICC's were estimated under the assumption of a Normal underlying 0 distribution

and a 3Pli model, the KDE estimate of the 0 distribution could be plotted on a Normal

probability plot to examine jointly) the assumptions about distribution and ICC forms. Or

the 9 distribution estimates under two ICC estimation techniques could be compared to see

how well they agree: Quite different ICC forms or parameter sets could in principle lead

to very similar ei distributions; if so then for many purposes it would then be a matter of

indifference which ICC's were used, so considerations such as cost of ICC estimation, etc.,

could come into play. Finally, it may be possible to estimate the 0 distribution sufficiently

accurately with, say, Rasch ICC's (for which item parameters can be estimated independently

of the 0 distribution), and then use that estimate as part of a marginal xnaximum likelihood

approach to estimating item parameters in a 3PL model which more accurately models the

item response behavior.
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Appendix A. Details of the simulation

For each simulated data set, M Monte Carlo trials were run (one trial entails sampling N examinees,

generating a 10 and J item responses for each examinee, and constructing the distribution estimates

PNJ and PNJA from these). In our simulation, Al was taken to be 100. In the discussion below,

Fe,t stands for eittor of the two distribution estimates tried.

For each triot two measures of fit to the true ability distribution F were reported. First, the

value of

= maxiiFest(ti) tot ...,t1200}

was calculated, for ti's ranging from 6 to 6 spaced at 0.01 intervals, as an approximation to

5 supilF,(t) )1;t E (--cV,00)}

as well as the value L = t at which 3 was attained. Second, an approximation to the squared

distance
11co

,0[11,4(0 - F(t)12g(t)dt

was calculated. where the weight function g was taken to be the standard normal density. The

approximation used was the Monte Carlo approximation

:2 It'.- [Fest(To F(T012,

where are iid with marginal density g, and K = 500 for our simulation.
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Finally, Monte Carlo sample averages

1 M1 M3 = E .LIELm, and r2 = E
4g4 naini

were computed, as well as sample standard deviatiolis. 3 estimates EgbI estimates EN, and

I estimates fEti3J}h12 standard deviation for 7 was estimated using the delta method (Serfiing,

1980, p. 118).

Ef371 may be regarded as a reasonable approximation to MAX = EV]. Because of the dis-

cretization in calculating and L, Ern probably is not as good an indication of Ile true value

LOC = t where the distributions are firthest apart, but it may still be of some descriptive value.

Finally, {Er/211112 is exactly

RMS = E 1 1F.,t(t) F(t)rg(t)dt}1/2

The pseudo-random number generators used were linear congruential generatcra (see Rubin-

stein, 1981)

= (a c) mod rn,

using a = 75,c = 0, m = 231 for generating O's and a = 27 + 1, c = 1, m = 235 for generating

item responses. Normal observations were obtained from these unifolm observations by the polar

transformation

= y'-2log 111 cos 22rU2

Z2 = /-2iogY1siu2rU2

and the bimodal mixture and l<2 - observations were taken to be appropriate transformations of

these. Pseudo-random values obtained using these transformations do exhibit some lattice structure

but this was not considered a problem for our calculations, which are essentially all Monte Carlo

integrations.
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Appendix B Proofs
Proof of Theorem. 1: Observe that, for any c > 0,

PliftN,7(e) F(e)1 El P [IPN,J(49) Fj(e)i IF-7(e) ges)i

P [ItN,j(e) FJ(.3)1 c/2] (for large

< C e-2N(40?

for some universal constant C, and N large. (Serfiing, 1980, p. 59). This tends to zero as N oo.

0

Proof of Theorem 2: Observe that

KV (ri) 5_ 8] = Pr' .7 .S71.7(9)]

= PIPP(X.r) 5. T311149)]

= (Xi) + r(9) 75-7N.7(e) r(9)1.

By Slutsky's Theorma, since r(6) = liriij 757,1171(9) we know that 75(17j)-f-r(8) and 7571(i.r)

have the same asymptotic law, i.e. for any t.

Pli2;1(rj) r(8)- /77%(0) < ti F(i).

Then in particular for t =

FT;10-C./ + r(9) j(e)L(8) 5_ r(9)] Pir(8)).

The assertion about uniform convergence follows from a theorem of Polya 1080, .18).

Proof of Theorem 3: In the following calculation, it will be helpful to let Y be a random variable

with distribution K independent of 0 and all item responses. Squaring (6),

00
RMS2 = E f iFNJatt) 110129(0dt

E E NT,
2=0

2

t ( )
.1)K pie til g(t)dt



www.manaraa.com

Junker Recover* the Ability Distribution 27

00 r

=e- [bic1.94t )12 + [varianc(t)1} g(t)dt

{P1v[X* = K t -75771(.1
Er
.7=0 h

var PNEXJ = j/JVC-co

2

pfe tl} g(t)dt

ft-T;11/1
h

= r {PIP-31 (X. j) + lay t] pie t)}2 g(t)dt

I {t 75.71(X,r)i}g(t)dt
N n=i

hY < ti PIO < tn3g(t)dt

+ f VaxK[t
N g(t)dt

1

(bias)jh (variance)N.m.

Note that (bias)2NA does not depend on N. As long as

EIY1 = julK(u)dti < oo,

we will have hY 0 in probability, so that by Slutsky's Theorem the distributions of 15,71(174 +hit

and P.71(Xt) will converge to the same thing, namely F(t) = P[O < tl, at every t (we are assuming

F is continuous) as J -4 oo and h and h -4 0. Hence the integrand of (bias)2Njh converges to

zero at each t, and if g(t) is a density it follows that (bins)tuk 0 as J -+ oo and h -* 0 (and N
is free).

On the other hand, for each fixed I, h, t the random variable

ft -75;1(11

is bounded between 0 and 1. hence if g(t) is a density we have for each fixed J and h

g(t)dt

K[t 1-7-'.11(X.r)}g(t)dt < 1.

Multiplying by 1/N it is clear that variance)NA 0 as N oo uniformly in J and h. This
proves Theorem 3. 0
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