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Abstract

We propose a simple scheme for smoothly approximating the ability distribu-
tion for relatively long tests, assuming that the ICC's are known or well estimated..
The scheme works for quite a general class of item charscteristic curves (ICC’s)
and is guaranteed to completely recover the © distribution as the test length,
J, grows. After an initial function inversion, the schems can be inexpensively-
used to recover the © distributicn in each of several different administrations
of the same test (or subpopulations in one test administration). Moreover, this
approach could be used to recover the distribution of a dominant ability dimen-
sion when iocal independence fails. Finally, the scheme provides a starting place
for diagnostics concerning assumptions about the shape of the © distribution or
ICC’s of a pasticular test. Work is currently underway to further examine and

refine these methods using essentially unidimensional simmiation data, and to
apply the estimators to real tests.

Keywords: Item response theory, kermel smoothing, Jatent trait distribution,
popuiation assessment.
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University of Iilinois and Carpegie Melion University.
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Junker: Recovering the Ability Distribution 2
1 The basic estimator

A principal application of educational testing is inferring the distribution of abilities in
various populations. This task is important for both users of these tests (in, say, comparing
various subpopulations} and researchers and test developers (in, say, developing or using
item calibration—ICC parameter estimation—procedures within the IRT framework).

Inference about the ability distribution from iter;x response data goes back at least to
Lord (1953) who gives an interesting qualitative account of the possible distortions induced
by the traditional IRT model. With the rise in popularity of item response theory, IRT,
many methods for estimating the latent distribution have been developed.

Samejima and Livingstcn (1979) fit polynomials to latent densities using the method of
moments. Samejima (1984) also fits © densities, given the MLE 8, using specific parametric
families by matching two or more moments. Levine (1984, 1985) projects the (unknown)
latent distribution onto a convenient function space in the span of the test’s conditional
likelihood functions and estimates the projection by maximum likelihood. Mislevy (1984)
assumes that the ability distribution is well approximated by a collection of masses centexed
at points placed a priori along the # axis and estimates the sizes of the masses at each
point. More generally, hierarchical and/or empirical Bayes techniques may be used to esti-
mate parameters of the latent trait distribution if it belongs to a tractable family of priors.
These methods all rely upon local independence for their validity; moreover they tend to be
expensive in terms of computation and storage.

We will examine a simpier method of estimating the ability distribution which, in addi-

tion, is robust to some violations of local independence. Consider a set of J binary items
X, =(X. Xs,.... X))

that may be embedded in a longer sequence or pool of items (X;, X3, X3,...). Let © be the

latent trait of interest. let P (8), P(8),..., Ps(8) be the item characteristic curves, ICC’s,

TR e KoY ¥



Junker: Recovering the Ability Distribution 3

with respect to ©, and denote averages of items as X ; = :}E‘{ X;, and simijarly for averages
P;(6) of ICC’s. Under the usual local independence {LI) and monotonicity (M) conditions
of item response theory (e.g. Hambleton, 1989), or more generally under Stout’s (1990)
formulation of essential independence (EI) and local asymptotic discrimination (LAD), we
know that 6;(X,) = p}'l(:?;) is a plausible point estimate of ©: 6;(X,) is a consistent
estimator of © under either set of assumptions. It immediately follows that the distribution
of 8,(X )
Fift) = Pif(X,) < 4]

converges to that of © as well (e.g. Serfling, 1980, p. 19). Now consider administering the
test X; to N examinees, obtaining NV response veetors X,;,...,X xs and corresponding ¢

estimates 5;(,&1 P I 67;( X n7); a natural estimator of the © distribution is the “empirical”
distribution of these §;'s

. 1 XN
Fust) = 53 Vi (1)
= {fraction of 05(X.s)'s < t}
where the “indicator function” 1s takes the value.l if S is true and 0 if S is false.

Theorem 1 Suppose (X;, X,,...) 1s a sequence of ttems and © s a latent trast such that
El and LAD hold. Define g H{X;) as above. If the distribution function

F(t) = PI® < ]

is continuous, the empirical Jistribution function Fy j(t) defined in (1), converges in proba-

bility to I atf each t as both J — oc gnd N — cc.

As with the work of Stout (1990} and Junker (1991), the embedding in an infinite-length
item pool is partly a conceptual tool. In practice, one might check the EI condition using
Stout’s (1987) test, and check the LAD condition by verifying that the average ICC for a

particular test was an invertible function.

R
'.?(t';. .



Junker: Recovering the Ability Distribution 4

In fact, the full strength of the LAD condition is not needed here. A weaker condition
that also gives the theorem is that, for all #; > ¢; there exists ¢(t,,¢2) such that

iiﬁgfﬁj(fz) —~ Pi(ty) 2 e(tr,ta) - (2)
Similarly, the full strength of tﬁ;a EI condition is net needed. It suffices to have, for ail ¢,
lim Var (X ;|0 = ¢) = 0. (3)
J~co

Under the weaker conditions {2) and (3), the consistency of P, (X ;) as a point estimate
for § may fail, but Theorem [ still goes through. The proof of Theorem 1 is :ased on a
well-known exponential bound due to Dvoretsky, Kiefer and Wolfowitz (Serfling, 1980, p.
59) on the error made in approximating F(t) with £y ;(t). See Appendix B for some details.

2 Two practical considerations

Note that the theorem does not in any way require that the ICC’s have 0 and 1 as lower and

upper asymptotes. For exampie, if Ps has a lower asymptote c, i.e.,
liminf Ps(t) > c > 0,Vt € R,
J~00

there certainly could be positive probability that some X;’s have X; < c. The only rea-

sonable thing for 'P-? to do with such an X ; is send it to —oo, which ruins the estimate of
F.

But for any fixed 8, if ¢ < liminf.o Ps(6),

imsup P[X; < ¢l = limsup = P{X; < ¢c|® = t}dF(t)

J=00 J o ~O0
< Ii;nsup " P[X; < P;(8)|© = t]dF(t)

= F(9),



Junker: Recovering the Ability Distribution 3

after observing that P[X; < P;(6)|© = t] — li<sy and applying standard convergence
results {Ash, 1972). By letting # — ~o0 it follows that

Jim PX; < =0.

The distribution of §7{X ;) does indeed place mass at —oo for some scores (e.g., for X 7/J = 0
and fails to “recover” the O distribution for those scores. The point of the calculation
is that as J grows, the part of the © distribution corresponding to these “bad” scores
becomes negligible, so we don’t have to worry, theoretically, about its not being recovered.
Indeed, under local independence, we can further calculate that P[X; < ¢] falls off essentially
geometrically as J — oo {Hoeflding 1963, p. 15).

However in practice we still must be concerned about X ;’s below a lower asymptote c,
or above an upper asymptote d. In the pilot simulation described below we have made two

adjustments for this problem. Qur first adjustment replaces the basic point estimate 87 with

an estimator based on a shrunken X j:

) =73 | TR

This estimator also converges in distribution to @ . and it is evidently bounded (for fixed J)
if the asymptotes of P; are 0 and 1. Qur second adjustment is in the numerical inversion
of the function P, on the computer. We have written the inverter (a secant vanation of
Newton's method) so that it finds a root of a linear extrapolation of P;(t) = X when X
lies outside the asymptotes of P;. This adjustment is innocuous asymptotically.

Finally, note that this method (like others) requires “perfect” knowledge of the ICC’s.
In practice of course one never knows the ICC’s perfectly, so it is important to know what
happens if the “wrong” ICC’s are used in the definition of §;. For example, how sensitive
is this method to using estimates of the item parameters in a 3PL (three parameter logistic
ICC) model. instead of the true parameters; or how far off is the estimated © distribution if

the true ICC’s are 3PL’s. but only Rasch ICC’s are used to calculate 51?

Se)



Junker: Recovering the Ability Distribution 6

Theorem 2 Suppose X,,X,,... and © are as in Theorem [ with ICC’s Py(t), B, ...,
with average P;(t) as before. and suppose

Ri(t), Ra(2),

are another set of ICC’s, with average Ry(t). Let P, and R be the corresponding inverses,
and let

éJ(K) = R;I(Yj)

Fiz 8 such that P; Ry(6) has a finite limit 7(8). Then
Fi(8) = P05(X,) < 6] — F(r(R)

(where F is the distribution of ©). If these hypotheses kold for every 6, and if r and F are

continuous functions, then the convergence is uniform in 6.

The existence of the limit r{9) is a technical requirement that, like LAD, is innocuous in
the context of real, finite length tests. The most useful interpretation of Theorem 2 is that

|F2(8) — FIP} Ry(6))] — 0

as J — oo, i.e., the distribution of @ is estimated with a distortion P; R;. This follows
from the theorem if F is continuous at r(8).
The proof of Theorem 2 expands on the technique used to prove convergence of F;(8) to

F(8); see Appendix B. Just as in Theorem 1 it is also possible to show that the empirical

distributions

Fua(t) = = Z Lipx, e

converge to F(r{8)).

The value of Theorem 2 is that if the function P’ (E;(6)) can be (partially) identified,

then the distribution of 8, can still tell us a Jot about the underlying © distribution. For

10



Junker: Recovering the Ability Distribution 7

example, if the “true ICC's™ are P;(f) and the © distribution is recovered with “estimated
ICC’s” R;{(#), with the estimated ICC's satisfying

{P;(6) — Rs(6)] — 0

as J — oo, then the estimated distributions F; will converge to the true distribution F of
O, as long as the derivative P,(8) is bounded away from zero at each § as J — oo (this is
guaranteed by LAD for example).

Some knowledge of the underlying © distribution may even be available when the “true
ICC’s™ P,{8) and the “recovery ICC's” R;(#) do not match up asymptotically. For exam-
ple, it is easy to check numerically that for “typical® parameter values, averages of logistic
[CC's are themselves approximately logistic (with parameters approximately the averages of
the discrimination and difficulty parameters of the individual ICC’s). Thus for example if
the P;(8) are Rasch (one-parameter logistic) and the estimation metbod for the “difficulty
parameters” &; is known, on average, to bias the f;,- by some fixed but unknown additive
bias parameter B (so that logit R,(6) ~ logit P;(6) + 3) then roughly P, (R;(6)) ~ af — 8,
with o near 1, so that the location of the © distribution will be estimated wrongly but
the (shape) family to which it belongs may still be identified. Similar considerations apply
when the P,(6) are 3PL. and the R;() are 2PL: over the domain of P, (§), P (Rs(8)) is

approximately linear.

3 Kernel smoothing

The basic estimator proposed ‘n (1) is the “empirical distribution” function

- 1 Y
Fygit)y = —N"z:x I{F;t(fnjlﬁf}
n=
J
= Y Pn[X, = j1J) Le=in<n @
1=0 )

14
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Junker: Recovering the Ability Distribution 8
where

. : 1 &
EilXs =it ==V g n

is the natural estimator of the (discrete) distribution of X, based on N observations X,
vees XNJ. The indicator function on the far right in (4) may be written

function K'(u) increasing from 0 to 1 a8 u ranges from —oo to co. Denote the smoothed
estimator as ‘

=0
= L [t-F\(X.)
= F,,{-;K[ Jb } (5

1 X ot-v,
O = g L[]

where £(¢) is a fixed density (see for example Silverman, 1986). However it differs from these
estimators in several ways,

Second, we are not allowed dirgct aceess to the observations 9,... +On. We must base
our estimation of F on the discrete, noisy transformations Y;;,...,:YN,; of ©;,...,0n.

Note that the “granularity” of these observations chariges with J.

1%
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Junker: Recovering the Ability Distribution 9

Third, the observations X 1J,.- ., Xy must be transformed by the nonlinear transfor-
mation P, . This means that the granularity changes over the vange of © and X;; this
complicates practical calculations such as those leading to optimal rates for N,J and h.

We now show that the weighted root mean square exrot (RMS) _betwém this esnn;ator
and the true © distribution goes to zero as N,J — co. The theorem below is analogous to

Theorem 1.

Theort. - 3 Suppose X1, X2,... and © are as in Theorem 1 with ICC’s P.(6), Px(8),- .-
Defne Enaait) as in (5), for a fized kernel distribution function K. Then if the distribution
function F of © is continunus, and K has a finite first absolute moment,

RMS = {E [;[ijh(t) - F(t)]’g(t)dt}lﬂ -0 (6)

as N — 00,J — oo and h — 0, for any density g(t).

Unlike most nonparametric density estimation results, there is no restriction on the rates
at which B — 0, N — oo or J — oo. Thisiswrtlybecmseadistributionfunctionis
smoother than, and therefore easier to estimate than, a density. The corresponding technique
for estimation of the © density would require A3 to tend to zero more slowly than E [5;(,&'_,) -
@), for example, as well as further conditions on the rates at which N aad J tend to 0o.
Despite the fact that there are no rates in the theorem, devising h as a function of N aad J
to produce the “right” amount of smoothing is an important issue to which we shall return
below.

The proof of Theorem 3 (see Appendix B) is based on decomposing the RMS in (6) as

RMS? = [_ :{P{P}" (X,) +hY < t] — P[O < ]PPo(t)ét

o -
_ +—}1§; . Var K {t ?i(f;)} g(t)dt (1)

©

ERIC
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This technique can be modified to show that
E{Fyn(t) — F{t)* -0

for any ¢, and hence ﬁ’matt} ~— F(t) in probability, for each continuity point ¢ of F. For
example, this provides another proof that our orj ginal estimator ﬁ’N,J converges in probability

to F. It would also be clear from the proof that the same smoothing could be applied with
any consistent estimator 4, in place ??I(Y;).

is relatively large, the coarse granularity inherent in _PT,'I(Y;) should predominate over the

finer granularity inherent in observing NV examinees,

by assuming that X, is uniformly distributed on the interval defined by the lower asymptote
c and the upper asymptote d of P;{(0) and then applying the formula

h=C.J715 (vargy/2 (8)

which seems appropriate whep A has a variance {Silverman. 1986, Pp. 45-48; Reiss, 1981).
Our crude estimate of Var © is obtained by tabulating values of 8 = B7'((j + 1)/(J +2))
for all j such that ¢ < J+D/(J+ 2) < d, and calculating

(Var ©)}/2 (-T413)(énterquertile range)

(following the relationship between interquartile range and standard deviation for the Normal
distribution). Prelimirary trials with C = 1.1/2,1/3.1/4 in (8} indicated that ¢ = 1/3
produced the best RMS resuits.

There is reason .0 believe 11,.; vacice of K should not be very influential on the RMS in

{6) (Silverman, 1986, PP- 42-43), The K used in ou- "t slations was

. ¢ 3
K(t) = / —-(1 - uz) I{fu§<;}dn

14
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Junker: Recovering the Ability Distribution 11

,0 , t <=1
= {1@-+2) , i <1 - (9
1 Lt >l

This choice is conservative about the tails of the © distribution.

4 Computer simulation

The estimators proposed in Theorems 1 through 3 are less complicated than distribution
estimators cwrrently in use in IRT. To belp evaluate these estimators a pilot simulation
study was performed. In this simulation, item response data was generated using various
d; = 1 parametric models, and we attempted to recover the ability distribution using both

the smoothed and unsmoothed estimators.

Monte Carlo trials: M=100
Examinee sample size: N = 5,000

Ability distribution:  Normal N(o,1
Bimodal Mixture  iN(-1.5,1) + 1N(1.5,1)
Discontinuous x; -1
Test length: J =10, 30. 60. 100 B
ICC type: Rasch:  b;’s equally spaced from -2 to 2

3PL: b;'s equally spaced from -2 to 2
a;'s cycling through 0.5, 1.0, 1.5
c;’s all set to 0.2
‘Estimated’: Generated with the 3PL ICC’s above;
Estimated with the ICC parameters:
By ~ N(b;, 11J)
Qg ~ N(Gj, 0.25)
¥; ~ max{~N(0.2,0.1},0}
(all independent).

Table 1: Monte Carlo simulation parameters.

The parameters of the pilot simulation are indicated in Table 1. All possible combinations

15




Junker: Recovering the Ability Distribution 12

of these parameters were investigated. The choice of ability distributions was intended to
examine two “typical” and one “worst case” target distribution. While the standard normat
distribution is extremely smooth and has & bounded positive density the distribution of the
shifted chi-squared random variable x}—1 puts no mass below & = —1 and the density jumps
from 0 to +o00 at # = —1. (This choice is not intended to be terribly realistic, but allows
us to explore the performance of our distribution estimator under adverse circnmsfancea.)
Although the means of these distributions are both 0, the chi-squared distribution has twice
the variance of the normal. The bimodal mixture was chosen to represent a situation where
two radically different types of examinee take the test. Its standard deviation is also greater
than 1 (roughly 1.8).
The ICC's used were all subfamilies of the three parameter logistic (3PL) curves:

Fi(t) = ¢ + (1 — ¢;){1 + expf—aft — ;]| .

In the case labelled “Rasch”, ¢; = 1,¢; = 0 and §; are as indicated. The same ICC's
were used to recover £ as to generate the data. Indeed 59" is exactly the MLE for @
under the Rasch model with known item parameters. Similarly for the 3PL case, whe.e all
the parameters were allowed to vary as indicated above; now 5}” is a somewhat inefficient
estirnator of 8. In the case labelled ‘Estimated’, the 3PL ICC's were used to generate the
data (£5{f)’s in Theorem 2) but then their item parameters were deliberately contaminated
with noise to produce the “recovery ICC’s” (R;(6)'s in Theorem 2) used to estimate F, to
roughly approximate the practical situation in which item parameters themselves‘must be
estimated from data. Thus the cases Rasch, 3PL, and ‘Estimated’ represent increasingiy
hostile situations for the distribution estimator to work in.

Finally, the choice of N = 5.000 examinees was somewhat arbitrary. In preliminary runs,
N = 1,000 and N = 10,000 vielded measures of fit of the estimated ability distribution to the
true distributicn quite comparable to those reported here. The main difference was in the

variauces of our estimated measures of fit. N = 5,000 was chosen because at that level the

16!
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Junker: Recovering the Ability Distribution 13

variance is much better than at N = 1,000 and not much worse than that at N = 10,000.

The basic estimators used to compare recovery of F from casec to case were the empirical
distribution function (EDY)

. 1] XN
Fya(t) = N?-; L x. <

and the kernel distribution estimator (KDE)

n=1 h

. 1 & X
Fna(t) = ?\?ZK[ 7 (Xns)

where
; =-1]J - Xs+1
9(1) = P L DL L
P =77 |
(and K and h are as described in (8) and (9) above). Each of these distribution estimators
is consistent for the true @ distribution, by application of Theorem 1 through Theorem 3.

For each simulated data set, sample means and standard deviations for estimates of

RMS = {E /:[Fe.:(t) ~ F(t)]‘g(t)dt}m

are reported. In addition, mean estimates of
MAX = E{sup{|Feu(t) -~ F(t)}: —00 <t < o0}

and the average value LOC = tn. at which MAX is attained are reported. (Note: Fest
stands for either of the distribution estimators above.) In general the weighting function g
should be chosen to reflect our interests in the © distribution F: g should give more weight
to areas of F that should be well-estimated and less weight to areas of F' for which we are
willing to tolerate less gnod estimation. In these simulations, the weighting function g was
taken to be the standard normal density: some weight is given to estimating F well at all
g's, but more weight is given to estimating F well near # = 0. More details about these

distances and the methods of calculation can be found in Appendix A below.

17



Junker: Recovering the Ability Distribution

Test RMS Deviation
Length | Estimator | ave SD MAX LOC
10 | EDF |0.04655 0.00002 | 0.11021 0.376%4
KDE 0.02318 0.00003 | 0.03812 0.89134
30 EDF 0.01692 0.00001 | 0.04032 0.097%4
KDE 0.00887 0.00002 | 0.01447 0.23184
60 | EDF 0.00984 0.00002 | 0.02510 0.07844
KDE 0.00652 0.00002 { 0.01076  0.05334
100 | EDF 0.00731 0.00002 | 0.01895 -0.02836
KDE 0.00577 0.00002 | 0.00965 -0.07616
Table 2: © ~ N(0,1), Rasch
Test RMS Deviation
Length | Estimator | ave SD MAX LOC

10 EDF 0.07015 0.00002 | 0.15724 -1.00076
KDE 0.05158 0.00003 | 0.09368 -1.23646
30 EDF 0.02794 0.00002 | 0.06418 -0.77476
KDE 0.02176 0.00002 | 0.03755 -~1.26626
60 : EDF 0.01521 0.00002 | 0.03527 -0.46316
KDE 0.01251 0©.00002 | 0.02109 -1.05756
100 EDF 0.01035 0.00002 | 0.02463 -0.33196
KDE 0.00907 0.00003 | 0.01532 -0.80926

Table 3: © ~ N{0.1). 3PL

TN
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Test RMS Deviation
Length | Estimator | ave SD MAX LOC

———

100 | EDF |0.09665 0.00004 | 0.22175 -0.74996
KDE |0.08412 0.00004 | 0.13431 -1.21956
30 EDF | 0.05695 0.00004 | 0.11573 -0.67436
KDE |0.05439 0.00004 | 0.08258 -0.89616
60 EDF | 0.01835 0.00002 | 0.04188 -0.70396
KDE | 0.01645 0.00003 | 0.02802 -1.10236
100 EDF | 0.01823 0.00003 | 0.03782 -0.40826
KDE | 0.01767 0.00004 | 0.02668 -0.79636

Table 4: © ~ N(0,1), Estimated

From Tables 2, 3 and 4, it is clear that smoothing in the KDE is helping, especially with
short tests. In comparing Tables 2 and 3 it is clear that the presence of the nonzero lower
asymptote c is degrading the fits. This can be seen both in the reduced RMS values and ‘n
the movement of LOC, the location of the maximum deviation between F.,, and F, toward
negative values. Finally, comparison of Tables 3 and 4 indicates th-c using ‘neisy’ ICC’s
somewhat degrades the recovery of F.

Figure 1 illustrates the performance of the estimators in Table . The firs¢ three pazels
are probability-probability (p—p) plots of the estimated © distributior /- -.cticat axis) agsiust
the true © distribution (horizontal axis), for 10, 30 and 60 items. Each pane! depicts cne
of the 100 Monte Carlo trials for the corresponding line of Table 3 The step functions
represent the EDF estimator and the smooth curve represents the KDE estirnator. The
closer each is to the solid diagonal line, the better the true probabilitics . the © disiri~ution
are estimated. In particular for 30 or 60 items, estimated probabilities are g.cte close to * Turs
probabilities. The story is very similar for the performance of the estimators ir. Tables 2, 5
and 6 (see also Figure 3). The fourth panel in Figure 1 compares the density derived from
the KDE estimator in pagei three to with the true © density (some excessive bumpinc.. ...

the estimated density is attributable to the fact that the “window width” & v'as chosen to

19
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Theta ~ Normad, 3PL, 10 tems Theta ~ Nommned, 3PL, 30 Reme
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Figure 1: p — p and density plots of EDF and KDE estimators. EDF is represented by step
function, KDE by curve. In the last panel. the true density is the dashed curve and the
KDE-based density estimate is the solid curve.
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make a good distribution estimate rather than to make a good density estimate).

Theta ~ Normai, Eatimated, 30 toms
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Figure 2: p— p and density plots of EDF and KDE estimators. EDF is represented by step
function, KDE by curve. In the second puanel, the true density is the dashed curve and the
KDE-based density estimate is the solid curve.

Figure 2 illustrates the performance of the estimators in Table 4. The left panel is a
p — p plot of the EDF {step function) and KDE (smooth curve) estimators for 30 items, and
the right panel compares the corresponding KDE-based density with the true © density. In
the Monte Carlo trial illustrated, contamination in the parameters of the “recovery” ICC’s
caused some bias and scale distortion in the estimated distribution, but the estimate still
correctly suggests that © has a Normal or bell-shaped distribution.

In Tables 5, 6 and 7, in which © is bimodal, the KDE estimator is still doing better
than the EDF. It is encouraging to see that the orders of magnitudes of the RMS and MAX -
measures of fit are the same 25 in the N(0,1) case above. It is a little surprising that the
fits can actually be better for the bimodal cases than the normal, but perhaps the greater
variability is working in our favor here: we are getting more. extreme-ability examinees with

which to form F.,; and thus to estimate the tails of F. Finally, note that there is much less

21
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difference in the fits of the 3PL and ‘Estimated’ 3PL cases.

Test RMS Deviation
| Length | Estimator | _ave SD MAX LOC
10 EDF | 0.04760 0.00003 | 0.12379 —1.36996
KDE 0.03678 0.00003 | 0.06299 -1.25226
30 EDF 0.01820 0.00003 | 0.04668 -0.61856
KDE 0.01547 0.00003 | 2.02502 -0.42646
60 EDF 0.01107 0.00003 | 0.02710 -0.25206
KDE 0.00995 0.00003 | 0.01622 —0.17576
100 EDF 0.00870 0.00003 | 0.01923 -0.03886
KDE 0.00817 0.00003 | 0.01290 -0.13216
Table 5: © ~ Bimodal, Rasch
Test RMS Deviation
Length | Estimator| ave SD MAX LOC
10 EDF 0.05268 0.00003 | 0.12160 1.08084
KDE 0.03612 0.00003 | 0.09342 -4.44996
30 EDF 0.02268 0.00002 | 0.05616 —0.66696
KDE 0.01877 0.00002 | 0.04229 -3.68386
60 EDF 0.01353 0.00003 | 0.0349€ -—1.24996
KDE 0.01205 0.00003 | 0.02561 -2.75386
100 EDF 0.00998 0.00003 | 0.02457 -1.22086
KDE 0.00924 0.00003 | 0.01860 -2.64946
Table 6: © ~ Bimodal, 3PL
P Figure 3 illustrates the performance of the estimators in Table 6, for 60 items. Again,

the left panel is a p~ p plot of the EDF (step function) and KDE (smooth curve) estimators
and the right panel depicts the KDE-based density estimate. Once again the estimated

distribution provides good estimates of probabilities under the true distribution, and the

presy 1

corresponding density estimate tracks the two modes of the true © distribution reasonably

well.
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Junker: Recovering the Ability Distribution

Test RMS Deviation
Length | Estimator | ave  SD MAX LOC
10 EDF [0.06357 0.00005 ] 0.14624 0.78714
KDE |0.05101 0.00005 | 0.09497 —4.97589
30 EDF [0.03203 0.00005 | 0.08038 -2.37405
KDE | 0.02058 0.00005 | 0.06457 ~3.38695
60 EDF | 0.01386 0.00003 | 0.03747 -1.11546
KDE |0.01245 0.00003 | 0.02796 -2.63776
100 EDF | 0.01120 0.00004 | 0.02776 -1.42786
KDE |0.01055 0.00004 | 0.02134 -2.29616

19

Table 7: @ ~ Bimodal, Estimated

Theta ~ Bimodal, 3PL, 60 ltemy
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Figure 3: p — p and density plots of EDF and KDE estimators. EDF is represented by step

function, KDE by curve. In the second panel, the true density is the dashed curve and the
KDE-based density estimate is the solid curve.
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Junker: Recovering the Ability Distribution

In Tables 8, 9 and 10, note how gradual the decrease in MAX is; this can be attributed
partly to the fact that 9(1) “doesn’t know” that F assigns no mass to the mterva.l (—o0, —~1)
and thus freely places @'s there. so that F.y is grossly overestimating F for 8 < —1. This
—1 in all but one case. It seems remarkable that the
- RMS should drop as muck: as it does, considering the fact that the Normal weighting function

certainly explains why LOC is near

g assigns significant weight to the region near or below @ = —~1. Once again there is little
difference between the 3PL and ‘Estimated’ 3PL cases. Finally, note that the EDF estimator
is doing better than the KDE estimator in many cases here. OQur ad hoc choice of A is

probably failing us here by being too large to track the “sharp upturn’ in £ at 1.

Test RMS Deviation
: | Length | Estimator | ave SD MAX LOC
_ 10 EDF | 0.09922 0.00004 | 0.23352 —0.26996 |
KDE | 0.09241 0.00003 | 0.20600 -1.00996
30 EDF 0.05404 0.00003 | 0.14608 -0.91796
KDE | 0.05508 0.00003 | 0.17924 -1.00996
60 EDF 0.03812 0.00003 | 0.15993 -1.00996
KDE |0.04010 0.00003 | 0.16010 -1.00316
100 EDF 0.02944 0.00003 | 0.15246 -0.99996
__ KDE | 0.03215 0.00003 | 0.14717 -0.99996
_ Table 8: © ~ x* — 1, Rasch
- 5 Discussion
| | . , —
- To implement this scheme in practice, one must numerically invert the average ICC Py for
] the test in question at or near the J+1 possible values of X ;. After this, a table constructed
] from the inversion can be used simply and cheaply to estimate © distributions for each
- of several administrations of the same test, or each of several subpopulations in a single
- administration. For shorter tests lengths the basic statistic 8; may need to be
24
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——

Test RMS Deviation
Leggti Estimator ave ISI:)___J MAX LOC
10 EDF | 0.11871 0.00004 | 0.30689 -1.00996
KDE |0.10699 0.00004 | 0.28934 -1.00996
30 EDF | 0.07276 0.00004 | 0.22700 -1.00996
KDE | 0.07188 0.00004 | 0.23167 -1.00996
60 EDF | 0.05201 0.00003 | 0.20477 -1.00096
KDE |0.05408 0.00003 | 0.20211 -1.00996
100 EDF | 0.04153 0.00003 | 0.19628 -0.99996
KDE | 0.04365 0.00003 | 0.18294 -1.00976

Table 9: © ~ x? — 1, 3PL

Test RMS Deviation
_Le_ggth Estimator ave SD MAXL LOC
10 EDF [ 0.11387 0.00005 | 0.30689 -1.00996
KDE {0.10600 0.00005 { 0.33073 -1.00096
30 EDF | 0.08264 0.00005 | 0.32359 —1.00996
KDE | 0.08161 0.00005 | 0.30244 -1.00996
60 EDF | 0.05322 0.00003 | 0.20477 -1.00996
KDE | 0.05466 0.00004 | 0.21590 -1.00096
100 EDF | 0.04303 0.00004 | 0.20150 —1.00996
KDE | 0.04491 0.00004 | 0.20859 -1.00646

Table 10: © ~ x? — 1, Estimated

0o
N
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as we have done with 6}, to effectively estimate F. Kernel smoothing of the estimated
distribution (KDE) is also quite helpful. Work is currently underway (Nandakuma-t and
Junker, 1992) to further examine and refine these methods using essentially unidimensional
simulation data, and to app'v the estimztors to real tests.

Because it is fast, this scheme could be also be used for some diagnostic purposes. For
example, if ICC’s were estimated under the assnmption—of a Normal underlying © distribution
and a 3PL model, the KDE estimate of the © distribution could be plotted on a Normal
probability plot to examine (jointly) the assumptions about distribution and ICC forms. Or
the © distribution estimates under two ICC estimation techniques could be compared to see
how well they agree: Quite different ICC forms or parameter sets could in principle lead
to very similar © distributions: if so then for many purposes it would then be a matter of
indifference which ICC’s were used, so considerations such as cost of ICC estimation, etc.,
could come into play. Finally, it may be possible to estimate the © distribution sufficiently
accurately with, say, Rasch ICC’s {for which item parameters can be estimated independently
of the © distribution}, and then use that estimate as part of a marginal maximum likelihood
approach to estimating item parameters in a 3PL model which more accurately models the

item response behavior.
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Appendix A Details of the simulation

For each simulated data set, M Monte Carlo trials were run (one trial entails sampling N examinees,
generating a @ and J item responses for each examinee, and constructing the distribution estimates
Ens and Fys from these). In our simulation, M was taken to be 100. In the discussion below,
F.,: stands for eithr of the two distribution estimates tried.
For each trial, two measures of fit to the true ability distribution F* were reported. First, the
value of
5 = max{|Fen(t1) = F(t1)} : to,- . -, t1200}

was calculated. for ¢;’s ranging from -6 to 6 spaced at 0.01 intervals, as an approximation to
§ = sup{{Fenel(t) - F(t)};t € (~0,00)}

as well as the value L = timas 2t Which § was attained. Second, an approximation to the squared

distance

% = f T Fn() - F(OPg()dt

-0
was calculated. where the weight function g was taken to be the standard normal density. The

approximation used was the Monte Carlo approximation

X K
P = & S (FealT0) - FTWP,
k=1

where T5,...Tx are iid with marginal density ¢, and K = 500 for our simulation.

25 «
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Finally, Monte Carlo sample averages

F= LS5, I-L1% 1, mar=13 D
Y, my -‘Eg my a1 "'EMI m

m=1

were computed, as weil as sample standard deviatiops. 5 estimates E{5], L estimates E[L}, and
T estimates {E{I°]}*/? standard deviation for T was estimated using the deita method (Serfling,
1080, p. 118).

E[5] may be regarded as a reasonable approximation to MAX = E[S]. Because of the dis-
cretization in calculating 5 and L. E{I] probably is not as good an indication of \he true value
LOC = t where the distributions are farthest apart, but it may still be of some descriptive value.
Finally, { EIT’]}!/? is exactly

{ 00 1/2
RMS = { £ [ (Fuutt) - F)Pa(0)it}

The psendo-random number generators used were linear congruential generators (see Rubin-
stein, 1981)

rv = {87,y +¢) mod m,

using a = 7%,¢ = 0,m = 2°! for generating ©'sand @ = 27+ 1, ¢ = 1, m = 235 for generating
item responses. Normal observations were obtained from these unifor m observations by the polar

transformation

Zy = =2logl; cos2xl;

Z2 = =Z2logTsin 22U,
and the bimodal mixture and \* ~ I observations were taken to be appropriate transformations of
these. Psendo-random values obtained using these transformations do exhibit some lattice structure

but this was not considered a problem for our calculations, which are essentially all Monte Cario

integrations.

23
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Appendix B Proofs

Proof of Theorem 1: Observe that, for any € > 0,

PliFya(@)-F@) 2| < P[Fv.s(8)- Fi(0)+IFs(0) - F(8)f 2 ¢

P ({Fn.1(8) — F1(8)| 2 ¢/2] (for large J)
C . e~ W/

174

N

for some universal constaat C, and N large. (Serfling, 1980, p. 59). This tends to zero as N — oco.
a

Proof of Theorem 2: Observe that

PIE;' (X5 <8 = PX;<TRA0)
- = PP7 (X)) <P7 R0
= P[P (X5)+(6) - P; Bs(®) < r(9)]

By Slutsky’s Theorem, since 7(8) = lim y.oo F3* Bs(§) we know that P (Xs)+7(6) and P; (X1)
have the same asymptotic law, i.e. for any .

P[P;H(X 1) +1(8) - P;'Rs(6) < ] — F(3).
Then in particular for ¢ = 7(8),
P[P (X ;) + 7(8) — Ps(O)R1(9) < 7(8)] — F(r(8)).

The assertion about uniform convergence follows from a theorem of Polya (Serfling, 1980, p.18). O
Proof of Theorem 3: In the following calculation, it will be helpful to let ¥ be a random variable
with distribution K independent of © and all item responses. Squaring (6),

RMS® = E j_:gﬁmm-f'(m*gu)dt

o0 J . """! . 2
IR {Zf’.v{i’m:‘/mf ["‘P LUl ’} -—Piest}} g(t)dt
—oe =0

Ju
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il

- /:L {{bias1)]? + [variance(t)]} g()dt

2
jjo {ZJ: Pn {Y.r -—-:J'/J} K {t-ﬁ‘;’:("/l)] -PO<L t}} g(t)dt

il

o J _ 1,.
+ [ var {Z PuXs = 310K {‘ Fs G/7 ’] }y(t)dt
~00 =0
‘ /: {PPF X))+ Y <1 - Pl@ < ) g(t)de
0 N 1
o[y {d S x [‘ "T’Fh‘n’]}gma
[ PP () +AY <4 - Pl < gt

oo 51
+-.-i; [_ _Vark [‘ F’}; (X )} g(t)dt

== (bias }i, 7 + (variance)n sa.

i

!

Note that (bias)} ;5 does not depend on N. As long as
EjY| = / Jul K (4)dx < oo,

we will have AY -+ 0in probability, so that by Slutsky’s Theorem the distributions of ;' (Xs)+AY
and P7*(X ;) will converge to the same thing, namely F(t) = P[© < t}, at every t (we are assuming
F' is continuous) as J — 0o and & — o0 and h — 0. Hence the integrand of (bias)} ;, converges to
zero at each £, and if g{t) is a density it follows that (bias)3,;;, — 0 as J — oo and & — 0 (and N
is free).

On the other band, for each fixed J, A, t the random variable

h

is bounded between G and 1. hence if g(t) is a density we have for each fixed J and &

o _ Bl
L Var K [t P“;‘ (Y’)} g(t)dt < 1.

Multiplying by 1/N it is clear that (variance)ns; — 0 as N — oo uniformiy in J and A. This

proves Theorem 3. O
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